プログラム起動時の「セキュリティの警告」の消し方

windows 7 でプログラムを起動するたびにsecurity warningが出るのが小さなストレス。

といわけで、この消し方をメモ書き。

1. コントロールパネル->インターネットオプション
2. セキュリティーのタブで、custom levelを開く
3. その中でMiscellaneousの項目下の"Launching applications and unsafe files"の設定を、Enableに。

これで解決♪

参考:Windows 7: Disable the "Open File Security Warning" message(英語)

EclipseとMinGWでC++

EclipseでC++を使おうとしたところ、色々と設定を忘れてたのでメモ
MinGWをCドライブ直下にインストールしたとして、

変数 - 値
Path - C:\MinGW\bin
C_INCLUDE_PATH - C:MinGW\include
CPLUS_INCLUDE_PATH - C:\MinGW\lib\gcc\mingwxx\x.x.x\include\c++
LIBRARY_PATH - C:\MinGW\lib

最初ライブラリのパスを通し忘れてて"Unresolved inclusion: "と言われてうるさかったけど、これで解決。

なにを今更って感じですが、一応メモしておく^^;

アンドロイドでArduinoロボット動かしてテレビとか操作してみた。

動機

New York Timesで、「2011年の終わりには、googleがアンドロイドフォンで家の電球を操作できるようになる。すごいね。」的なことを報道していたので、発表される前にやってみようかな。という軽い気持ちから。

目的

  • アンドロイドフォンで家事用ロボット!
  • 基本的なアイディアとしては、ロボットを遠隔操作して、そのロボットが見付けたデバイスを操作してみよう!みたいなもの。
  • 折角なので、この間発表されたAndroid Open Accessory Development Kit (ADK)を使ってアンドロイドでArduino操作してみた。

概要

  • デバイス(デモではテレビとLEDライト)にはそれぞれRFIDタグを割り振てられている
  • ロボットにはRFIDリーダーが取り付けられていて、それぞれのデバイスのRFIDを読み取ることが出来る。
  • 使うアンドロイドフォンは2台。
    • ロボットに載せてArduinoに命令を送りロボットコントロールするために一台(ロボットクライアント)
    • 遠隔地からそのロボットをコントロールするために一台(コントローラークライアント)
  • ロボットはビデオイメージをコントローラにストリームバック。アンドロイドフォンをサーバーにして、外部から直接SDにアクセスさせる仕組み。
  • ロボットが新しいデバイス(RFID情報)を取得する度にその情報と目的地のRFID情報をコントローラクライアントに送信
  • コントローラクライアントは、その方法を受け取り次第データベースに参照し、新しいデバイスであれば操作するためのAPIプラグインをダウンロードインストール
  • というわけで、どんなデバイスでも遠隔操作できるようになるという仕組み。


あ、部屋のアラーム留めるの忘れてた!
ルームメイトにあとでとやかく言われるのやだな。

しかたない。アンドロイドフォン使って留めとくか。

おっと、主から連絡が入ったぞ

よしよし、アラームクロックまで移動させられよう。

アラームクロックのRFIDをスキャンして。

RFID情報とMACアドレス情報をベースに、操作するためのインターフェースを取得。

よし、これで家のアラームを操作できる

電源、オフ!

といった感じ。。

デモ (with presentation)


*デモは2分32秒から!

質問があればお気軽にー。

霊長類行動学16. グループ形成の理由

Scientific study

  • create model
  • develop hypothesis of the explanation
    • has to be falsifiable
  • science cannot prove anything, but test the hypothesis
  • hypothetical deductive framework

at the beginning of Primatology

  • observational and deductive science
  • status of Primatology was how much they had data
  • people were interested in
    • 1. descriptive study:
      • details of behavior
    • 2. correlational study
      • ecological correlations of grouping patterns
  • findings were based on correlational study

Crook (1972)

  • provided intensive discussion
    • 1. "primate form groups because of predation risk"
    • 2. "sexual selection is very important"
  • brought those discussion

Wrangham (1980)

  • changed the way of study in Primatology
  • introduced a hypothetical deductive framework
    • 1st principle is
      • 1. prediction
      • 2. test
  • looked at relationship between behavior and ecology
  • Wrangham did
    • 1. changes the way we classify social systems of primates
      • groups are not fixed entities
      • instead, they are a product of underlying patterns of male and female behavior
        • response to environment
    • 2. emphasized importance of understanding the explanatory model
    • 3. focuses on female as a driving force behind
      • group organization
      • thought to be that males solely play the key roles.
      • his arguments were too biased, but the idea opened up the question

defined the question

  • "why they live in group?"
    • important question because it's odd among all other animals.
    • animals want to avoid competition so want to avoid grouping
    • for any animals, foraging by their own is better
      • group living should be disadvantages.
      • therefore, there should be some reasons
      • 1. living in group is actually an advantage
      • 2. cost stays, but getting other benefit more - less disadvantage
make the problem testable
  • two different kinds of groups of females
    • 1. Kin
    • 2. non-kin
  • Wrangham classified primates based on the type of group not based on group size
    • 1. "female bonded" - female stays in natal group
      • forms affiliative bonds with other females
    • 2. "not female bonded" - female leaves natal group
  • establish the criteria to distinguish "female bonded" from "not female bonded"
    • 1. do female breed in natal group?
    • 2. do female transfer out of natal group?
    • 3. do female engage in affiliative actions
      • e.g., grooming, haddling, dominate, assistance, etc
  • now, we can test hypothesis like if "Japanese macaque is female bonded"

why female live in group?

  • cooperation must be an Evolutionary Stable Strategy (ESS)
    • he was creating a model, the mechanism
  • rules:
    • suppose there is a fruit tree that can support only two individual
    • There exists a linear dominance hierarchy: A>B>C>D
  • Condition 1: within dyadic competition (two fight with no support from others)
    • A, B on the tree, C, D on the ground
  • Condition 2: any two individuals can cooperate, and they can defeat any other.
    • (how to form the cooperation tends to be based on kin.)
    • C+D on the tree, A, B on the ground, but soon
    • A+B on the tree, C+D on the ground
  • Thus, grouping is needed for intergroup feeding competition.
  • He argues that
  • => grouping patterns based on environmental condition
    • if one exploit patchy, high quality resources
      • females bond
    • if one exploit disperse, low quality resources
      • no bonding
  • => male attaches for resource defense
    • sexual selection is secondary for the reason to group
    • female behavior drives male dispersal
  • but his discussion about males were mostly wrong.
female-bonded non female-bonded
importance of food patches in inter-group interactions high low
frequency of female participation in inter-group interactions high low
role of female in group more merit active passive
frequency of female-female grooming high low
frequency of male and male grooming in multi-male group low high
shift in the mainstream of the theory
  • 1960's - 70's
    • female behavior is also important, but males are the most
  • 1980's - females determine

after Wrangham

  • Primatology is no longer a correlational study focusing on resource exploitation and resource availability
  • emphasis on the predictable model.
  • but where he failed was
    • he did not explain the primary question "why" primate form group, but only answerd "how".
    • idea about too much emphasis on sexual selection
    • he predicted that idea of predation drive grouping will be failed
  • but inspired people to go out to test, and built the foundation of science in this field.

Covel van Schails

  • falsifies food resource competition idea to explain the reason for grouping
  • very strong hypothetical deductive framework
    • existence of alternative model
      • have to test the opponent idea as well
    • Wrangham's model had worked well only in folivore paradox
3 hypothesis for why primate live in groups
  • 1. to avopid predation
    • increasing chance of defense
    • too costly for predator to attack
    • increase vigilance
  • 2. predation defense + advantages of group living
    • help in locating and defending resources
    • regulate resource use
  • 3. resource defense
    • predation is not an issue
    • regulation of group size
what makes group living bearable for individuals
  • 1. food is in large patches - if a lot of food
  • 2. individuals can only exploit limited amount of food
    • 1. ability to consume
    • 2. food itself is toxic (e.g., plant secondary compound), inadequate nutrition
  • 3. different age and sex classes
    • use different food items
      • niche separation, niche dimorphism
      • e.g., orangutan, males and females eat different food
alternative reasons
  • 1) animals regulate return time to patches
    • territory size increase, group size increase, defensibility decrease
    • => doesn't work
  • 2) information exchange (like bees)
    • benefit from sharing information of food
    • food is dispersed in space and time
    • they will benefit
what lacks in his approach
  • he made prediction and rejected all other ideas, but did not do for his model and predation model.
grouping v. population density
  • 1. predation model' predict group size goes up
    • then, fall off as group split
  • 2. intergroup feeding competition (IGFC)
    • group size should grow continuously
    • high population density -> more competition
groupsize v. fecundity (measured by #infants / female)
  • 1. Predation:
    • fecundity falls within increasing group
      • higher competition -> low number of infants
  • 2. IGFC
    • feeding increase with group size, then falls off as group get bigger
result
  • data fit both predation models
  • IGFC cannot explain why folivore is living in group

霊長類行動学15. オスメス間の戦略

the strategy can be categorized into the following four:

  • 1. Male tactics relative to male
  • 2. Female tactics relative to male
  • 3. male tactics relative to female
  • (female tactics relative to female is very limited)
  • both males and females care only self-interest
    • each has own mating tactics to maximize their reproductive success
    • keep changing strategies until it becomes stable

1. male tactics relative to male

male distribution
  • relative to female distribution
  • why some primate forms single male group?
    • because he can guard the female.
  • why most of the other primate males group together?
    • i.e., allow other male to stay in the same group?
    • they seek for immediate benefit by costing long-term risk
what is the cost for males to stay together?
  • establishing male dominance hierarchy
    • risk for injury, stress, competition
    • possible solution for them
      • stay quietly in the group to invest for future reproductive success.
        • e.g., Gorilla or Galago
        • but still have a risk of predation and less chance.
  • in large multi-male group
    • tolerant a presence of only a certain number of males.
    • if the group get bigger, low ranking males should leave because he wouldn't have a chance to mate for long time, but they DON'T
      • because too difficult to find other group by roaming around the dangerous savanna
      • even if they find, there is no guarantee that the new group has less males.
model to explain the reason why they don't leave, who control the mating
  • 1. concession model
    • dominant benefits from presence of subordinate males.
      • they can help dominant male to defend the group
      • so, he concedes enough mating to keep subordinates around.
    • e.g., Baboon
    • reproductive skew
      • increase with relatedness
  • 2. restraint model
    • dominant male controls group membership
    • subordinate male controls mating.
    • non-eviction
    • compromise - 'tag of war' (主権争い)
      • reproductive skew should decrease with relatedness
        • Chimp are related

2. female tactics relative to male

  • female has to adjust behavior of males, especially old world monkey
  • male can coerce female
two set of tactics
  • 1. Premating tactics
    • A. Promiscuity: female needs only one to reproduce, need a reason to be promiscuity
      • a. estrus synchrony - over-rap estrus
        • male cannot guard multi-mate at a time
      • b. behavior
        • sex skins - ovulation season to be uncertain
    • B. Mate preference
      • not only a mate-choice
      • makes it possible to mate guarding easy
      • she guarantees. paternity-males guard offspring
    • C. female transfer
    • D. female regulation of group size
      • large groups attract males
  • 2.Post mating tactics
    • more success rate of implantation at orgasm
      • "upsuck hypothesis"
          • suggests that the orgasm actually helps pull the sperm up into the reproductive tract with muscle contractions.
      • easily reach orgasm when mating with preferred male
    • female can time mating partner
    • for other animals
      • female discharges sperms by changing PH
      • change the diameter of the entrance

Male tactics relative to male

  • 1) infanticide
    • way to force female to mate
  • 2) dominant will target mate guarding
    • carefully watching females to maximize their reproductive success
  • 3) male can cooperatively guard females
  • 4) male can use social strategies to encourage female-choice
    • e.g., Baboon, to make friend with females.

霊長類行動学14. メスの交配パターン

female mating patterns

  • initiated by females
    • signaling & solicitation
  • promiscuous v. pairs
  • mating period can be restricted based on either they have
    • seasonality, annual cycle
    • aseasonal -- any time of year

seasonality

  • intensive case, only 2 weeks of mating season
  • usually 2 months
  • the birth peak correlates with rainy season
    • the rainy season determines availability of resource at the birth season.
  • mating and cycling (発情周期) correlate with ovulation (排卵)
    • some species like Lemur exhibit ovarian synchronicity so that all of the adult females in a forest are in estrus at roughly the same time.


Estrus

  • female becomes receptive to mating
  • limited period but characterizes female status
    • 1. Attractive - male is stimulated
    • 2. Proceptive - female is willing to mate (but male solicits)
    • 3. Receptive - female solicits and facilitates mating
  • depending on species, female solicitation focus on specific male or any males.
  • Orangutan females uses loud vocal signal to solicit males
  • (side note)human cycle

    • human females don't have estrus, but has a tendency to increase the solicitation during ovulation.
  • mating ties to female cycle
  • human female's cycle length = 25 - 35 days
  • basic features of Menstrual Cycle
    • 1. Follicular phase (卵胞期)
      • egg matures in follicle
      • increase in estrogen peaking in human
      • about day 15

卵胞期
脳の視床下部は性腺刺激ホルモン放出ホルモンを分泌して脳下垂体を刺激します。これによって脳下垂体から二種類の性腺刺激ホルモンが分泌されます。 卵胞刺激(らんぽうしげき)ホルモンと黄体化(おうたいか)ホルモンです。これらのホルモンは血液にのって卵巣に届き、卵巣を刺激します。
卵胞刺激ホルモンは、卵巣の中の原始卵胞(卵子を含んだ細胞)を発育させ、成熟させます。成熟する卵胞は、数万個のうちの、数個から多くて数十個です。このとき、卵巣で成熟した卵胞が卵胞ホルモン(エストロゲン)を分泌します。エストロゲンは子宮内膜に働きかけて子宮内膜を厚くし、受精卵が着床しやすくしていきます。
女性は生まれながらにして、卵巣内に原始卵胞をもっています。原始卵胞は胎児のときから、すでに卵巣に蓄えられています。生まれたばかりの女児で、約200万個といわれています。成長・加齢とともに減少し、初潮を迎えるころには5〜3万個、20代で3〜1万個、30代では8000〜5000個程度となります。そして閉経を迎えるころ、ほとんどの原始卵胞は死滅してしまいます。
この原始卵胞のうち数個から多くて数十個が、月に一度、卵胞に成長するわけです。卵胞からは卵胞ホルモンであるエストロゲンが分泌されて、子宮内膜がしだいにやわらかくなっていきます。受精卵の着床しやすい条件整備と栄養たっぷりの血液を蓄えるためです。
卵胞ホルモン(エストロゲン)は体温を下げるので、この時期は低温期となります。
(女性だけの「性周期」とは)

    • 2. high level of estrogen causes pituitary gland to secrete Luteinizing hormone (黄体形成ホルモン).
      • that causes ovulation (排卵)

排卵期
成熟する卵胞のうち、1個だけが成長を続けて「主席卵胞」となります。他の成長卵胞は次第にしぼんでいきます。個人差はありますが、約2週間で主席卵胞は成熟します。主席卵胞の直径が約0.2mmになると、卵胞刺激ホルモンの分泌は抑えられます。同時にエストロゲンが脳下垂体に働きかけて、黄体化ホルモンの分泌をうながします。
その黄体化ホルモンの刺激によって、卵胞の膜が破れ、卵子が飛びだします。そして飛びだした卵子は、卵管の先端にある、ちょうどイソギンチャクのような形をした卵管采(らんかんさい)から卵管に取り込まれて、子宮へと入っていきます。
これが排卵です。 

    • 3. Luteal phase (黄体期)
      • follicle (卵胞) transforms into corpus luteum (黄体) that secretes Progesterone
        • Progesterone causes endometrium (子宮内膜) -> elaborate
      • failure of implantation; Progesterone falls, endometrium sheds.
      • natural ovulation is suppressed by stimulation of nipple

●黄体期(おうたいき)
卵子が飛びだした後の卵胞は、黄体という組織になり、黄体ホルモン(プロゲステロン)を分泌します。この黄体ホルモンの作用によって、血液と養分が子宮に送られ、子宮内膜の妊娠準備が整えられていきます。卵管の太い所で卵子と精子が結合して受精卵となり、子宮内膜に着床すると妊娠です。
卵胞ホルモンの代わりに黄体ホルモンが分泌されるようになると、子宮内膜から粘液がでて受精卵が着床しやすい状態となります。受精卵が着床すれば、黄体ホルモンがさらに分泌され、子宮内膜の受精卵育成に適した状態を保ちます。
黄体ホルモン(プロゲステロン)は体温を上げるので、この期間は高温期となります。
(女性だけの「性周期」とは)

mating while pregnant

female signalling

  • olfactory
    • Vaginal secretions
      • males periodically check by sticking his finger in and taste
    • Urine
  • vocal
  • Behavioral signal
    • crouching
    • presenting
      • e.g., showing her bat to male
    • tongue flicking
    • lip smacking
  • sex skins
    • swelling of the perineum (会陰)
    • usually multi-male species
      • not all have it
      • has evolved at least 4 times
    • e.g.,
    • at the beginning of the Follicular phase (peaks near ovulation), Tumescence (腫れ上がり) becomes max
    • then, falls off rapidly afterwards

    • why?
      • 1. to look for best males?
        • sex skin incites male competition
        • but the signal is not honest, too loose, so this is not likely to be true
      • 2. to mate with many males?
        • skin obscures ovulation
        • allows female to mate with many males, confusing paternity
        • but then why 60% for only a short period of time? it can be like 10% for all the time.
      • 3. paternity certainty
        • Skin allows male to identify ovulation, assuring paternity.
        • 短い期間に限定することで、親を確実に絞れるようにするため?
        • No, because it's only 60% and if so, the period of all should be much smaller like Lemur
      • 4. Combination
        • assures paternity to dominant male, but confuses paternity by allowing mating with others.
  • female controlling mating in very precise way.

霊長類行動学13. 父子関係

Male infant interactions

  • 5 classifications of male and infant interaction
    • 1. Intensive
    • 2. affiliative
    • 3. Occasional Affiliative
    • 4. Tolerance
    • 5. Use and Abuse

1. Intensive

Callitrichids
  • mothers regularly have twins
  • in total up to 25% of mother's weight at birth
  • high energetic demand to produce high protein milk
  • carrying infant around and catching bugs cost too much on top of it
  • so males provide share patterning by doing including
    • carry offspring
    • grooming
    • protect
    • confort
    • everything except nursing
  • mating patterns like polyandry or monogamy is rare. but in this case,
    • small
    • twin
    • diet is insect
  • so, males are FORCED not to be polygyny.
Hylobates
  • male carries and protect
Macaca Sylvanus
  • Weird
  • Promiscuous mating
    • like other macaque, male dominance hierarchy
    • distinct mating season, agonistic hierarchy
    • live in high altitude - Atlus mountain (North Africa)\
    • eat pine nale
  • form coalition, male bonding in spite of its hierarchy
    • female roam around and mate all males in order
  • male carries and protect children
    • ritual male interaction
    • passing children around between males. (play with kids?)

2. Affiliative

  • Affiliative behavior is
    • not same as parental care
    • male affiliative bond with kids
      • know he is my children
      • take playground, etc
    • but no substantial parental care
    • characterized by spatial proximity
    • species specific things

3. Occasional Affiliative

  • Short-end of affiliative
    • i.e., like affiliative, but less frequent. less consistantly.
  • e.g., Chimp, Gerad
  • in multi male species, they become affiliative
    • when dominant male lose status
      • to avoid new dominant to kill his children
    • when new male moves into group
      • suddenly all become affiliative to protect their children
  • Interesting example
    • Therapithecus
      • young male affiliate with kids, but the kids is a young female for future mating opportunity.
        • no tension between her father because the female is his daughter

4. Tolerance -- most are

  • common pattern
  • don't really care, don't kill
    • neutral

5. Use and Abuse

  • two types
  • 1. agonistic buffering - use
  • 2. infanticide - abuse
Agonistic buffering - "kidnapping"
  • i.e., "infant use", "infant carrying", "counter carrying", "tripartite velations", "triatic male infant interactions"
  • e.g.,
  • happen in all multi-male group
  • 1. kidnapping
    • male picks up a child the opponent likes to reduce tention
    • 子供を人質にとって攻撃をやめさせる。
  • 2. variant - "passport"
    • use children as a passport to approach to hateful other male
  • 3. variant
    • affiliate with kids to approach female
    • humans do the same thing